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Outline of the talk

Motivation for solving operator equations corresponding to

unbounded operators

Introduction with some algebraic operations on operators

Definitions and examples of closable operators, closures, closed

operators and non-closable operators

In the language of graph of operators, we see definitions of closable

operators and closed operators

Few results including closed graph theorem

Solution of a simple boundary value problem - from the point of view

of operator theory (the second derivative as an operator)

Some stability results for solving an operator equation (which comes

from a boundary value problem)
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Notations

H, an infinite-dimensional Hilbert space (not necessarily separable)

over the field K of real or complex scalars.

B(H), the space of all bounded linear operators on H

R(T ), the range of T

N(T ), the null space of T

I , the identity operator

spaces : c00, `2, L2[0, 1],C [0, 1],C 1[0, 1]
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Motivation

Consider the differential map

x 7→ x ′

on a suitable subspace of C [0, 1] with the sup norm ‖.‖∞.
Observations :

1. The map is not defined everywhere on C [0, 1]. For instance, the

function defined by x(t) = |t − 1
2 | is not differentiable.

2. It has a dense domain. The domain of it is a subspace consisting of

all differentiable functions whose derivatives are continuous on [0, 1],

denoted by C 1[0, 1].

3. It is a linear operator defined on C 1[0, 1].

4. It is not continuous.

We denote the map as T : C 1[0, 1]→ C [0, 1] defined by Tx = x ′.
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Introduction

This type of operators arise in boundary value problems and they are

not everywhere defined on Hilbert spaces.

Moreover, they are not continuous on their domain of definition, i.e.,

they are unbounded operators .

The theory of unbounded operators developed in the late 1920s and

early 1930s as part of developing a rigorous mathematical framework

for quantum mechanics.

They are called unbounded observables in quantum mechanics.
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Introduction

The theory’s development is due to John von Neumann and Marshall

Stone. John von Neumann introduced graphs to analyze unbounded

operators in 1936.
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Elementary algebraic operations of addition and

multiplication on operators

Specification of a domain is an essential part of the definition of an

unbounded operator.

Let T and S be linear operators and let α be a scalar. Then the operators

T + S ,TS , αT and T−1 are defined as follows :

1. D(T + S) = D(T ) ∩ D(S), (T + S)x = Tx + Sx .

It may be possible that even though S and T are densely defined

D(S + T ) may be a trivial subspace.

2. D(TS) =
{
x ∈ D(S) : Sx ∈ D(T )

}
, (TS)x = T (Sx).

3. If α = 0, then αT = 0, otherwise

D(αT ) = D(T ) and (αT )x = α(Tx).

4. If T is injective, then D(T−1) = R(T ) and T−1y = x if y = Tx .
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Extension / Restriction of an operator

Two operators T and S are equal if D(T ) = D(S) and Tx = Sx for

all x ∈ D(T ).

S is an extension of T if D(T ) ⊂ D(S) and Tx = Sx for all

x ∈ D(T ). Here T is called a restriction of S and it is denoted by

T ⊂ S .

Example 1.

Let T1 : C 1[0, 1]→ C [0, 1] by T1x = x ′

and T2 : C 2[0, 1]→ C [0, 1] by T2x = x ′. Here T2 is a restriction of T1.

Notation : In dealing with unbounded operators, one can express

relations using vectors or the operators themselves. For example, the

expression STx = Sx (x ∈ D(T )) is same as ST ⊂ S .
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Laws

Associative Laws :

(AB)C = A(BC ) and (A + B) + C = A + (B + C ).

Distributive Laws :

(A + B)C = AC + BC and A(B + C )⊂AB + AC .

Commutative Law :

In general, D(ST ) 6= D(TS), and hence ST 6= TS .

Inverse :

In general, TT−1 6= TT−1.

It often happens that although T is unbounded, it has bounded

inverse. In this case T−1T⊂TT−1 = I , where I is the identity

operator.

Note that ST = TS does not imply S−1T−1 = T−1S−1.
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Invertible operator

Definition 2.

An unbounded operator T : D(T )→ H is said to be invertible if there

exists an everywhere defined bounded operator S such that ST ⊂ TS = I .

This definition is adopted in the books written by J.B. Conway and I.

Gohberg et. al. Of course, in some textbooks, they do not assume the

inverse defined everywhere as in the book by Kato.

Some results fail to hold if Kato’s definition for invertibility is assumed :

Let S and T be unbounded invertible normal operators. If ST = TS , then

TS is normal (will be proved later).
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Closable operators / closure / closed operators

Let T : D(T )→ H be a linear operator.

Suppose T is bounded.

1. We have continuity.

2. We have the bounded extension theorem to extend T by continuity

from D(T ) to a linear operator defined on D(T ).

Moreover, the operator defined on D(T ) can be further extended to the

whole space H because D(T ) is complemented in H.
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Closable operators / closure / closed operators

Suppose T is unbounded.

Then the following two phenomena obviously occur.

1. We loose continuity.

2. We loose bounded extension theorem.

Both phenomena lead in a natural way to the notion of closable / closed

operators.
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Closable operators

Consider first, the loss of continuity : Given D(T ) 3 xn → x .

It may happen that

1. limit of {Txn} may not exist ;

2. Even the limit of {Txn} exists, it may not be the same with some

other sequence D(T ) 3 x̃n → x ;

3. For any sequence D(T ) 3 xn → x , even all limits of {Txn} are the

same, say y , which may not be same with Tx .

Any of these possibilities prevents T to be extended “by continuity” to all

the limit points of D(T ), i.e., to D(T ).
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Closable operators

Among the three possibilities, the second case is not “not so bad”

circumstance if the following happens:

Not along all sequences D(T ) 3 xn → x ∈ H, {Txn} has a limit.

Nevertheless for all sequences in D(T ) converging to x along which {Txn}
has a limit, this limit is unique.

In other words, if D(T ) 3 xn → x ∈ H and D(T ) 3 x̃n → x ∈ H such that

limTxn and limTx̃n exist, then limTxn = limTx̃n. This situation

(circumstance) leads to the definition of closable.

P. Sam Johnson An Introduction to Unbounded Operators Part - 1 14/49



Closable operators

Definition 3.

Let T : D(T )→ H be a linear operator.

The operator T is closable if given any limit point x of D(T ), for all

sequences {xn} converging to x and {Txn} has a limit, such a limit is the

same.

It is also possible for a closable operator to have many closed extensions.

Its minimal closed extension T is called its closure.

That is, every closed extension of T is also an extension of T .
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Closure

If T is closable, there is a natural candidate for its closure. How to find it?

Let T : D(T )→ H be a linear operator. If T is closable, the closure of T

is the operator T whose domain and action are

D(T ) =
{
x ∈ H : there exists a sequence {xn} from D(T ) such that

xn → x and for which {Txn} is also convergent
}
.

Here uniqueness of y comes from the definition of closability of T , which

will make the following operator well-defined.

Define Tx = y for x ∈ D(T ).

Thus T ⊂ T for every closable T (Exercise).

In particular, T is the smallest closed extension of T (Exercise).
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Closed Operators

There are pitfalls for the unwary : D(T ) may be different from D(T ).

It may happen that there is a limit point x ∈ H of {xn} in D(T ), the

sequence {Txn} may not converge. In this case, T is not defined on x ,

because

T
(

lim
n→∞

xn
)

= Tx := lim
n→∞

Txn.

Definition 4.

Let T : D(T )→ H be a linear operator. The operator T is closed if

T = T .
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Closed Operators

Consider the following three facts for a linear operator T on H :

(i) D(T ) 3 xn → x ∈ H.

(ii) Txn → y ∈ H.

(iii) Tx = y .

Then

T is closed if (i) + (ii) =⇒ (iii).

T is bounded (everwhere defined on H or defined on a closed

subspace of H) if (i) =⇒ (ii) + (iii).

Thus every bounded operator defined on the whole space H or has a

closed subspace as domain, is closed.
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Non-closabale operators

Non-closable operators are “too pathological.”

The spectrum of unbounded operators, even closed ones, can be any

closed set including ∅ and C.

The domain of defintion plays an important role. In general, the larger the

domain is, the larger the spectrum is.
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Graph of an operator

Let T : D(T )→ H be a linear operator. The graph of T defined by

G (T ) =
{

(x ,Tx) : x ∈ D(T )
}
⊆ H × H.

is a subspace of H × H.

Note that H × H is naturally equipped with the inner product〈
(x , y), (x ′, y ′)

〉
H×H

= 〈x , x ′〉H + 〈y , y ′〉H

which makes it a Hilbert space.
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Definitions of closable/closed operators using graphs

T is closable if G (T ) = G (S), for some linear operator S .

T is closed if G (T ) = G (T ).

Proposition 5 (Exercise).

Let T : D(T )→ H be a linear operator.

1. T is closable if and only if the following holds : If {xn} is a sequence

in D(T ) such that xn → 0, and the sequence {Txn} in H is

convergent, then we have limTxn = 0.

2. T is closed if and only if the following holds : If {xn} is a sequence in

D(T ) that is convergent in H and the sequence {Txn} is convergent

in H, then we have

lim xn ∈ D(T ) and T (lim xn) = limTxn.
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Graph of an operator between Hilbert spaces

Let H1 and H2 be Hilbert spaces and let T : D(T ) ⊆ H1 → H2 be a linear

operator. The graph of T defined by

G (T ) =
{

(x ,Tx) : x ∈ D(T )
}
⊆ H1 × H2.

is a subspace of H1 × H2.

Note that H1 × H2 is naturally equipped with the inner product〈
(x , y), (x ′, y ′)

〉
H1×H2

= 〈x , x ′〉H1 + 〈y , y ′〉H2

which makes it a Hilbert space.

T is closable if G (T ) = G (S), for some linear operator S .

T is closed if G (T ) = G (T ).
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Graph of an operator between Banach spaces

Let X and Y be Banach spaces and let T : D(T ) ⊆ X → Y be a linear

operator. The graph of T defined by

G (T ) =
{

(x ,Tx) : x ∈ D(T )
}
⊆ X × Y .

is a subspace of X × Y .

Note that X × Y is naturally equipped with the norm

‖(x , y)‖X×Y =
{
‖x‖2

X + ‖y‖2
Y

}1/2

which makes it a Banach space.

T is closable if G (T ) = G (S), for some linear operator S .

T is closed if G (T ) = G (T ).
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Example on Function Spaces

Example 6 (closed operator).

Let C 1[0, 1]→ C [0, 1] (with the sup norm) be defined by

Tx = x ′.

It is a known theorem from calculus that if

xn(t)→ x(t), x ′n(t)→ y(t)

uniformly in [0, 1], then x(t) is continuously differentiable and

x ′(t) = y(t).

Hence T is closed.

P. Sam Johnson An Introduction to Unbounded Operators Part - 1 24/49



Example on Lebesgue Spaces

Example 7 (closed operator).

Consider the operator defined by Tx = x ′ in L2[0, 1] with the domain

D(T ) =
{
x ∈ L2[0, 1] : x is absolutely continuous, x ′ ∈ L2[0, 1], x(0) = 0

}
.

T is a closed operator. Moreover, it has a bounded inverse.

Example 8 (not closed but closable).

The operator defined by Sx = x ′ in L2[0, 1] with the domain

D(S) =
{
x ∈ C [0, 1] : x ′ ∈ C [0, 1], x(0) = 0

}
is not closed but admits a closure. The closure of S is the operator defined

in the previous example (Example 7).
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Example on Sequence Spaces

Example 9 (not closed but closable).

Let T : c00 → `2 be defined by T (xn) = (nxn), where

c00 =
{
y ∈ `2 : ∃N(y) ∈ N such that yn = 0, ∀n ≥ N(y)

}
.

The operator T is not closed but it is closable.

Example 10 (closure).

The operator S defined by S(xn) = (nxn) in `2 with the domain

D(S) =
{

(xn) ∈ `2 : (nxn) ∈ `2

}
is closed. Moreover, S is the closure of the closed operator defined in the

previous example (Example 9).
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Example on Lebesgue Spaces

Example 11 (non-closable operator).

Consider T : L2[0, 1]→ L2[0, 1] with Tx(t) = x(0).t and D(T ) = C [0, 1].

This operator does not admit a closure. Indeed take

xn(t) =

{
1− nt 0 ≤ t ≤ 1

n

0 1
n ≤ t ≤ 1

we get Txn(t) = t but xn(t)→ 0 in L2[0, 1].
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Example on Sequence Spaces

Example 12 (non-closable operator).

Let H = `2 and D =
{
y ∈ `2 : ∃N(y) ∈ N such that yn = 0,∀n ≥ N(y)

}
.

Fix a vector x0 ∈ `2 \ D and put D(T ) = D + span{x0}, define

T (y + αx0) = αx0, y ∈ D, α ∈ K.

Then T is a densely defined linear operator that is not closable.
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Example on Sequence Spaces

Exercise 13 (non-closable operator).

Let {en} be an orthonormal basis of a separable Hilbert space H.

Let D = span{en}, x0 ∈ H \ D. Take D(T ) = D + span{x0} and define

T : D(T )→ `2 by

T (y + αx0) = αx0 for y ∈ D, α ∈ K.

Show that (0, x0) ∈ G (T ) and deduce that T is not closable.
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Example on Sequence Spaces

Exercise 14 (non-closable operator).

Let {en} be an orthonormal basis of a separable Hilbert space H.

Let D = span{en}. Define the operator T on H with D(T ) = D by

T
( n∑

j=1

αjej

)
=

n∑
j=1

αje1.

Show that T is not closable.
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Example on Lebesgue Spaces

Exercise 15 (closed operator).

Set t : [0, 1]→ C by

t(s) =

1 s = 0
1√
t

0 < s ≤ 1

and define the maximal operator of multiplication T by t on L2[0, 1].

That is,

Tx = t x , for x ∈ D(T ) =
{
x ∈ L2[0, 1] : t x ∈ L2[0, 1]

}
Show that T is a densely defined closed operator.

P. Sam Johnson An Introduction to Unbounded Operators Part - 1 31/49



Example on Lebesgue Spaces

Exercise 16 (closed operator).

Let H = L2(R) with the inner product

D(T ) =
{
x ∈ H :

∫ ∞
−∞

t2|x(t)|2 dt <∞
}
.

Define T as (Tx)(t) = t u(t) for x ∈ D(T ).

Show that T is unbounded and closed.
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Example on Lebesgue Spaces

Exercise 17 (closed operator).

Consider the following two operators defined by

Tx(t) = e2tx(t) and Sx(t) = (e−t + 1)x(t)

on their respective domains

D(T ) =
{
x ∈ L2(R) : e2tx ∈ L2(R)

}
D(S) =

{
x ∈ L2(R) : e−2tx , e−tx ∈ L2(R)

}
.

Show that

1. T is closed.

2. S is not closed since it has a closure S defined by

Sx(t) = (e−t + 1)x(t) on D(S) =
{
x ∈ L2(R) : etx ∈ L2(R)

}
.
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Some Results

Theorem 18.

Let T : D(T )→ H be a linear operator.

1. If T is closed, then N(T ) (the null space of T ) is closed.

2. If T is injective, then T is closed if and only if T−1 is closed.
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Some Results

Theorem 19.

Let T : D(T )→ H be a linear operator. On D(T ) by

〈x , y〉T = 〈x , y〉+ 〈Tx ,Ty〉, ‖x‖T =
{
‖x‖2 + ‖Tx‖2

}1/2

an inner product and the corresponding norm (T -norm or graph norm) are

defined.

T is closed if and only if
(
D(T ), 〈., .〉T

)
is a Hilbert space.
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Some Results

Theorem 20.

Let T : D(T ) ⊆ X → Y be a bounded linear operator from a normed

space X to a Banach space Y . Then there exists a unique bounded

extension S of T such that D(S) = D(T ). We have ‖S‖ = ‖T‖.

Theorem 21.

Every bounded operator is closable. A bounded operator T is closed if and

only if D(T ) is closed. If T is bounded, then we have D(T ) = D(T ); the

closure T is the bounded extension of T onto D(T ), constructed in

Theorem 20.

Exercise 22.

Every finite-rank closable operartor is bounded.
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Some Results

Theorem 23.

Let T be closable and injective.

The operator T−1 is closable if and only if T is injective. We then have

T−1 = T
−1

. If T
−1

is continuous, then we have R(T ) = R(T ).
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Some Results

Theorem 24 (Closed Graph Theorem).

Let T : D(T )→ H be a linear operator. Then the following statements

are equivalent :

1. T is closed and D(T ) is closed,

2. T is bounded and D(T ) is closed,

3. T is bounded and closed.

Applying the closed graph theorem, the following observations are made

for unbounded operators.

The domain of an unbounded closed operator is a proper subspace of H.

If T is unbounded, it is never true that D(T ) = D(T ). [Hint : if it were, T and hence

also T would be bounded.]

Even if T is a densely defined unbounded operator, the domain of T is not the whole

space H.
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Some Results

Theorem 25.

Let T : D(T )→ H be an injective linear operator such that R(T ) = H.

The operator T is closed if and only if T−1 ∈ B(H) (bounded on H).

Stability Result : If it is known that the equation Tx = y has exactly one

solution for every y ∈ H and if T is closed, then the solution depends

continuously on y , by Theorem 25 (as T−1 is bounded on H).

The next two results provide useful criteria for the existence of a bounded

inverse.
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Some Results

Theorem 26.

Let T : D(T )→ H be linear. Then the following hold :

1. Suppose that there is an m > 0 such that

‖Tx‖ ≥ m‖x‖ for all x ∈ D(T ).

Then T is closed if and only if R(T ) is closed.

2. Assume that T is closed. Then T−1 ∈ B(H) if and only if R(T ) is

dense in H and there is an m > 0 such that

‖Tx‖ ≥ m‖x‖ for all x ∈ D(T ).
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An example of boundary value problem

Consider the differential equation{
p(x)f ′(x)

}′
+ q(x)f (x) = g(x) 0 ≤ x ≤ 1 (1)

together with the boundary conditions f (0) = f (1) = 0.

If p, q are smooth and p(x) 6= 0 for x ∈ [0, 1], the equation may be written

in the form Tf = g where T is a closed operator from L2[0, 1] into itself.

If (1) has exactly one solution for every g ∈ L2[0, 1], then the solution

depends continuously on the right side g , when (1) arises from a specific

problem, this is the result usually to be expected on physical grounds.

P. Sam Johnson An Introduction to Unbounded Operators Part - 1 41/49



Closed Ranges

Theorem 27 (bounded case).

Let T ∈ B(H). Then R(T ) is closed iff T |N(T )⊥ is bounded from below,

i.e., there is some m > 0 such that ‖Tx‖ ≥ m‖x‖, for all x ∈ N(T )⊥.

Theorem 28 (closed operator case).

Let T : D(T )→ H be a closed operator. Then R(T ) is closed iff

T |D(T )∩N(T )⊥ is bounded from below, i.e., there is some m > 0 such that

‖Tx‖ ≥ m‖x‖, for all x ∈ D(T ) ∩ N(T )⊥.

The subspace C (T ) := D(T ) ∩ N(T )⊥ is called the carrier of T .

In fact, D(T ) = N(T )⊕⊥ C (T ) (orthogonal direct sum).
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Some Results

Theorem 29.

Let T : D(T )→ H be an injective closed linear operator. Assume that

there is a linear operator S from H into H with R(S) ⊂ D(T ) and with

domain dense in H, and suppose that TS ⊂ I
(
TSx = x ,∀x ∈ D(S)

)
.

If S is bounded on its domain, then T−1 ∈ B(H) and T−1 = S .
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Simple Boundary Value Problem

Consider the simple boundary value problem

−y ′′(x) = f (x)

y(0) = y(1) = 0,

where f is a function in L2[0, 1].

To find a solution, we integrate twice and obtain

y(x) = −
∫ x

0

∫ t

0
f (s) ds dt + c1x + c2, (2)

where

c2 = 0 and c1 =

∫ 1

0

∫ t

0
f (s) ds dt.
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Simple Boundary Value Problem

Interchanging the order of integration yields

y(x) = −
∫ x

0

∫ x

s
f (s) dt ds + x

∫ 1

0

∫ 1

s
f (s) dt ds

=

∫ x

0
(s − x) f (s) ds +

∫ 1

0
x(1− s) f (s) ds.

Hence

y(x) =

∫ 1

0
g(x , s) f (s) ds,

where

g(x , s) =

{
s(1− x) 0 ≤ s ≤ x

x(1− s) x ≤ s ≤ 1.
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The Second Derivative as an Operator

Conversely, if y is given by

y(x) =

∫ 1

0
g(x , s) f (s) ds,

a straightforward computation verifies that y satisfies

−y ′′(x) = f (x) and y(0) = y(1) = 0

almost everywhere.

The function g is called the Green’s function corresponding to the

boundary value problem.
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The Second Derivative as an Operator

Let us consider the above result from the point of view of operator theory.

We want to express the differentiable expression −y ′′ with the boundary

conditions y(0) = y(1) = 0 as a linear operator.

The action of the operator is clear. However, we must define its domain.

To do this, we note that (2) implies that the derivative y ′ is an indefinite

integral or, equivalently, y ′ is absolutely continuous.

An important property of absolutely continuous functions, is that the usual

“integration by parts” formula holds for the integral of fg , where f is

absolutely continuous and g is Lebesgue integrable.
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The Second Derivative as an Operator

Let the domain D(T ) of T be the subspace of L2[0, 1] consisting of those

complex-valued functions y which satisfy y(0) = y(1) = 0, have first order

derivatives which are absolutely continuous on [0, 1] and have second order

derivatives which are in L2[0, 1].

Note that y ′′(x) exists for almost every x since y ′ is absolutely continuous.

Define Ty = −y ′′.
Exercise : Show that T is an injective closed linear operator on L2[0, 1].

General solution of this problem will be discussed in the next lecture.
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